Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers.
نویسندگان
چکیده
Evidence indicates that PP2A (protein phosphatase 2A) interacts with epithelial tight junctions and negatively regulates the integrity of the tight junction. In the present study, the role of PP2A in the hydrogen peroxide-induced disruption of the tight junction was examined in Caco-2 cell monolayers. Hydrogen peroxide-induced decrease in electrical resistance and increase in inulin permeability was associated with the dephosphorylation of occludin on threonine residues. The hydrogen peroxide-induced decrease in electrical resistance, increase in inulin permeability and redistribution of occludin and ZO (zonula occludens)-1 from the intercellular junctions were significantly attenuated by selective inhibitors of PP2A (okadaic acid and fostriecin) and by knockdown of PP2A-Calpha (the catalytic subunit of PP2A). The PP2A-Calpha protein and PP2A activity were co-immunoprecipitated with occludin, and this co-immunoprecipitation was rapidly increased by hydrogen peroxide. Hydrogen peroxideinduced increase in co-immunoprecipitation of PP2A-Calpha with occludin was prevented by PP2, a Src kinase inhibitor. GST (glutathione transferase)-pull down assays using recombinant GST-Occludin-C (C-terminal tail of occludin) and the purified PP2A showed that PP2A binds to the C-terminal domain of occludin; Src-induced tyrosine phosphorylation of GST-Occludin-C enhanced this binding. The present study shows that hydrogen peroxide increases the association of PP2A with occludin by a Src kinase-dependent mechanism, and that PP2A activity is involved in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers.
منابع مشابه
Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.
Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolay...
متن کاملProbiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism.
Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in trans...
متن کاملContrasting effects of ERK on tight junction integrity in differentiated and under-differentiated Caco-2 cell monolayers.
ERK (extracellular-signal-regulated kinase) activation leads to disruption of tight junctions in some epithelial monolayers, whereas it prevents disruption of tight junctions in other epithelia. The factors responsible for such contrasting influences of ERK on tight junction integrity are unknown. The present study investigated the effect of the state of cell differentiation on ERK-mediated reg...
متن کاملOxidant-induced disruption of intestinal epithelial barrier function: role of protein tyrosine phosphorylation.
The effect of hydrogen peroxide (H2O2) on intestinal epithelial barrier function was examined in Caco-2 and T84 cell monolayers. H2O2reduced transepithelial electrical resistance (TER) of Caco-2 and T84 cell monolayers. This decrease in TER was associated with a decrease in dilution potential and an increase in [3H]mannitol permeability, suggesting an H2O2-induced disruption of the paracellular...
متن کاملHydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers.
Recent studies showed that c-Src and phosphatidylinositol 3 (PI3) kinase mediate the oxidative stress-induced disruption of tight junctions in Caco-2 cell monolayers. The present study evaluated the roles of PI3 kinase and Src kinase in the oxidative stress-induced activation of focal adhesion kinase (FAK) and acceleration of cell migration. Oxidative stress, induced by xanthine and xanthine ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 421 1 شماره
صفحات -
تاریخ انتشار 2009